cuburi

Time limit: 0.1s Memory limit: 2MB Input: cuburi.in Output: cuburi.out

Ionuţ a învăţat la şcoală să lucreze cu numere mari. El are la dispoziţie un şir de NN numere naturale nenule. Din fiecare număr el şterge exact trei cifre, fără să schimbe ordinea cifrelor rămase, astfel încât să obţină cel mai mic număr natural nenul posibil. De exemplu, din numărul 2073104920731049 se obţine numărul 2004920049, iar din numărul 1300413004 se obţine numărul 1010. Înlocuind fiecare număr citit cu numărul obţinut prin operaţia de mai sus, Ionuţ obţine un nou şir şi scrie termenii acestuia pe feţele unor cuburi astfel: primele şase numere din şir le scrie pe primul cub şi îl notează pe acesta cu 11, următoarele şase numere din şir le scrie pe un alt cub pe care îl notează cu 22 ş.a.m.d.
Aceste cuburi au fost distribuite în piramide după modelul din figura de mai sus. Piramidele au fost numerotate cu numere naturale consecutive. Piramida cu numărul de ordine 11 este formată numai din cubul cu numărul de ordine 11 şi are un singur nivel, piramida cu numărul de ordine 22 are pe primul nivel cuburile 2,32, 3 şi 44 iar pe ultimul nivel cubul 55 ş.a.m.d.
Două niveluri alăturate în cadrul unei piramide diferă prin exact două cuburi. Primul nivel al unei piramide conţine cu două cuburi mai mult decât primul nivel al piramidei precedente. Piramida se consideră completă dacă pe ultimul nivel are un singur cub.

Cerință

Scrieţi un program care citeşte numerele naturale nenule NN şi KK, apoi cele NN numere naturale ce fac parte din şirul iniţial, şi determină:

  1. Numărul de piramide complete construite de Ionuţ.
  2. Numerele scrise pe cuburile din primele KK piramide.

Date de intrare

Fişierul cuburi.in are două linii: prima linie conţine două numere naturale, NN şi KK, iar a doua linie conţine NN numere naturale. Pe fiecare linie a fişierului numerele sunt separate prin câte un spaţiu.

Date de ieșire

Fişierul cuburi.out are două linii: prima linie conţine numărul de piramide complete care au fost construite, iar a doua linie conţine toate numerele scrise pe cuburile ce formează primele KK piramide. Numerele sunt scrise separate prin câte un spaţiu, în ordinea apariţiei lor în şirul nou obţinut.

Restricții și precizări

  • 6N100 0006 \leq N \leq 100 \ 000
  • Se garantează că se pot construi cel puţin KK piramide complete.
  • Cele NN numere naturale de pe a doua linie a fişierului de intrare au minimum patru cifre şi maximum 99 cifre.
  • Se acordă 20%20\% din punctajul acordat problemei pentru rezolvarea corectă doar a primei cerinţe.

Exemplu

cuburi.in

31 2
18250 9280 18250 953805 20800 6040065 24208 4405 8794 1720 98886 96400 45544 8560056 36055 60400 80200 11560 36475 26992 68320 69400 20296 72640 34048 57700 66520 47440 91232 26080 90280

cuburi.out

2
10 2 10 305 20 4005 20 4 4 1 86 40 44 5005 30 40 20 10 34 22 20 40 20 20 30 50 20 40 12 20

Explicație

Primele 66 numere se găsesc pe cubul ce formează prima piramidă, următoarele 2424 de numere sunt scrise, în această ordine, pe feţele cuburilor ce alcătuiesc a doua piramidă.

Observaţie: în acest tabel, datorită spaţiului insuficient, numerele nu apar scrise pe exact două linii, ca în fişierele de intrare/ieşire.

Log in or sign up to be able to send submissions!