Future

Time limit: 0.5s Memory limit: 64MB Input: Output:

Tânărul ninja Enaz se pregăteşte de marea finală de aruncări cu shurikene. În funcție de distanța la care ajung shurikenele în urma aruncărilor concurenții primesc puncte. Zona de punctare este definită de MM subzone consecutive, adiacente, fiecare având lungimi și punctaje diferite. Astfel, dacă un concurent aruncă un shuriken la o distanță acoperită de o subzonă de punctaj xx, el va primi xx puncte, însă dacă distanța nu este acoperită de nicio subzonă, punctajul lui va rămâne neschimbat. Dacă shurikenul se află la granița unei subzone, se consideră că el aparține acelei subzone. Dacă însă un shuriken se află la granița a 22 subzone, se consideră că el aparține subzonei la distanță mai mare de origine. Cu câteva ore înaintea startului, Maestrul Uw are o viziune. Acesta știe cu exactitate la ce distanță de origine vor ajunge cele NN shurikene aruncate de Enaz. Având aceste informații el își pune întrebarea: Unde ar trebui să înceapă zona de punctare pentru ca Enaz să obțină cel mai mare punctaj posibil și care este acest punctaj?

Cerință

Să se afișeze distanța de la origine la începutul zonei de punctare ce aduce cele mai multe puncte lui Enaz și acest număr maxim de puncte. În cazul în care există mai multe astfel de distanțe, se afișează cea mai mică.

Date de intrare

Pe prima linie se găsește numărul de ordine al grupului de teste din care face parte testul.
Pe a doua linie se găsesc două numere naturale, NN și MM.
Pe a treia linie se găsesc NN numere naturale, aia_i unde 1iN1 \le i \le N, reprezentând distanțele de la origine la care au ajuns shurikenele aruncate de Enaz.
Pe următoarele MM linii se găsesc câte două numere, unul natural și anume did_i și unul întreg și anume pip_i unde 1iM1 \le i \le M, reprezentând distanța respectiv punctajul fiecărei subzone în ordine de la cea mai apropiată de origine la cea mai depărtată.

Date de ieșire

Pe prima linie se vor găsi două numere, unul natural și unul întreg reprezentând distanța respectiv punctajul cerute în cerință.

Restricții și precizări

  • 1N, M1031 \le N, \ M \le 10^3
  • 1ai10181 \le a_i \le 10^{18}
  • pi, di1015\lvert p_i \lvert, \ d_i \le 10^{15}
  • Distanța de la origine la începutul zonei de punctare 0\ge 0, cu alte cuvinte zona de punctare nu poate începe înaintea originii.
  • Grupurile de teste sunt următoarele:
# Punctaj Restricții
0 0 Exemplu
1 7 pi<0p_i < 0
2 11 N=1N=1
3 13 M=1M=1
4 39 ai, di, pi103a_i, \ d_i, \ \lvert p_i \lvert \le 10^3
5 30 Fără restricții suplimentare

Exemplu

stdin

0
6 4
8 11 12 5 9 4
2 4
1 -5
3 2
1 3

stdout

4 15

Explicație

După cum se poate vedea în imagine, dacă zona de punctare începe de la distanța 44, atunci shurikenele de la distanțele 44 și 55 vor aduce fiecare câte 44 puncte, shurikenele de la distanțele 88 și 99 vor aduce fiecare câte 22 puncte, shurikenul de la distanța 1111 va aduce 33 puncte, iar cel de la distanța 1212 nu va aduce niciun punct fiind în afara zonei de punctare. Punctajul total este 15, acesta fiind maximal.

Log in or sign up to be able to send submissions!