sum_prod

Time limit: 2.15s Memory limit: 256MB Input: Output:

Your math teacher has given the following task for homework: given a positive integer nn, find a sequence of positive integers a1,a2,a3,...,ana_1, a_2, a_3, ..., a_n, such that

a1a2a3...an=a1+a2+a3+...+an a_1 \cdot a_2 \cdot a_3 \cdot ... \cdot a_n = a_1 + a_2 + a_3 + ... + a_n and a1a2a3...ana_1 ≥ a_2 ≥ a_3 ≥ ... ≥ a_n

You quickly solve this task and by doing so, you convince yourself that such a sequence always exists but then you start thinking about the question: „Given a positive integer nn, what is the number of sequences with the above properties?"

Task

Write a program which for a given positive integer nn finds the number of sequences of positive integers a1,a2,a3,...,ana_1, a_2, a_3, ..., a_n, such that

a1a2a3...an=a1+a2+a3+...+an a_1 \cdot a_2 \cdot a_3 \cdot ... \cdot a_n = a_1 + a_2 + a_3 + ... + a_n and a1a2a3...ana_1 ≥ a_2 ≥ a_3 ≥ ... ≥ a_n

Input

From one line of the standard input, read one positive integer nn - the count of the numbers in the sequences.

Output

On one line of the standard output, the program has to write the found number of sequences. We know, it can be proven that given the constraints below, the answer is a finite number smaller than 101810^{18}.

Constraints

  • 2n100 000 000 0002 ≤ n ≤ 100 \ 000 \ 000 \ 000

Subtask

Subtask 1 (5 points)

  • n10n ≤ 10

Subtask 2 (10 points)

  • n1 000 000n ≤ 1 \ 000 \ 000

Subtask 3 (10 points)

  • n100 000 000n ≤ 100 \ 000 \ 000

Subtask 4 (10 points)

  • n1 000 000 000n ≤ 1 \ 000 \ 000 \ 000

Subtask 5 (20 points)

  • n10 000 000 000n ≤ 10 \ 000 \ 000 \ 000

Subtask 6 (45 points)

  • n100 000 000 000n ≤ 100 \ 000 \ 000 \ 000

Examples

stdin

2

stdout

1

Explanation

There is only one sequence with the specified properties and it is (2,2)(2, 2)

stdin

8

stdout

2

Explanation

(8,2,1,1,1,1,1,1)(8, 2, 1, 1, 1, 1, 1, 1) and (3,2,2,1,1,1,1,1)(3, 2, 2, 1, 1, 1, 1, 1)

Log in or sign up to be able to send submissions!