stalactite

Time limit: 0.1s Memory limit: 64MB Input: stalactite.in Output: stalactite.out

În adâncurile neexplorate ale lumii, unde se ascund peșteri străvechi și formațiuni minerale uimitoare, legendara arheoloagă Lara Croft conduce o expediție riscantă. Echipa sa a descoperit un set de date remarcabil. Fiecare număr din acest set reprezintă o colecție unică de stalactite, fiecare cifră a numărului corespunzând unei stalactite. Pe măsură ce analizează aceste date, Lara și echipa ei se confruntă cu două mistere cheie: identificarea formațiunilor simetrice și descoperirea perechilor de formațiuni (o stalactită și o stalagmită) care se potrivesc perfect.

Cerință

Dat fiind un șir de NN numere întregi pozitive, v1,v2,,vNv_1, v_2, \dots, v_N, unde fiecare număr reprezintă o formațiune de stalactite (fiecare cifră fiind o stalactită), rezolvă următoarele:

  • Câte dintre formațiunile de stalactite (numerele din șir) sunt simetrice? O formațiune este simetrică dacă ordinea cifrelor sale este aceeași citită de la stânga la dreapta și de la dreapta la stânga (ex: 1111, 343343, 555555). Numere precum 125125 sau 42294229 nu sunt simetrice.
  • Câte perechi distincte de indici (i,j)(i, j) există, cu condiția ca i<ji < j, astfel încât dacă v[i]v[i] reprezintă o formațiune de stalactite și v[j]v[j] ar reprezenta o formațiune de stalagmite, cele două formațiuni s-ar suprapune perfect?

Exemple de suprapunere:

  • Corect: 123+765=888123 + 765 = 888.
  • Incorect: 645+21=666645 + 21 = 666
  • Incorect: 412+247=659412 + 247 = 659
  • Incorect: 123+988=1111123 + 988 = 1111

Date de intrare

Pe prima linie a fișierului de intrare stalactite.in se găsește un număr întreg NN care reprezintă numărul de formațiuni.

Pe a doua linie se găsesc NN numere întregi v1,v2,,vNv_1, v_2, \dots, v_N, separate prin spațiu, reprezentând formațiunile de stalactite.

Date de ieșire

Pe prima linie a fișierului de ieșire stalactite.out se va găsi un singur număr întreg: numărul total de formațiuni de stalagmite care sunt simetrice.

Pe a doua linie se va găsi un singur număr întreg: numărul total de perechi (i,j)(i, j) cu i<ji < j care, atunci când sunt combinate, formează o suprapunere perfectă.

Restricții și precizări

  • 1N100 0001 \le N \le 100 \ 000
  • 1vi<1 000 0001 \le v_i \lt 1 \ 000 \ 000

Exemplu

stalactite.in

5
11 343 125 4229 55

stalactite.out

3
1

Explicație

Formațiunile 1111, 343343 și 5555 sunt simetrice.

Singura pereche validă este (1,5)(1, 5), deoarece 11+55=6611 + 55 = 66.

Log in or sign up to be able to send submissions!